Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine.

نویسندگان

  • Michael T Heneka
  • Fabian Nadrigny
  • Tommy Regen
  • Ana Martinez-Hernandez
  • Lucia Dumitrescu-Ozimek
  • Dick Terwel
  • Daniel Jardanhazi-Kurutz
  • Jochen Walter
  • Frank Kirchhoff
  • Uwe-Karsten Hanisch
  • Markus P Kummer
چکیده

Locus ceruleus (LC)-supplied norepinephrine (NE) suppresses neuroinflammation in the brain. To elucidate the effect of LC degeneration and subsequent NE deficiency on Alzheimer's disease pathology, we evaluated NE effects on microglial key functions. NE stimulation of mouse microglia suppressed Abeta-induced cytokine and chemokine production and increased microglial migration and phagocytosis of Abeta. Induced degeneration of the locus ceruleus increased expression of inflammatory mediators in APP-transgenic mice and resulted in elevated Abeta deposition. In vivo laser microscopy confirmed a reduced recruitment of microglia to Abeta plaque sites and impaired microglial Abeta phagocytosis in NE-depleted APP-transgenic mice. Supplying the mice the norepinephrine precursor L-threo-DOPS restored microglial functions in NE-depleted mice. This indicates that decrease of NE in locus ceruleus projection areas facilitates the inflammatory reaction of microglial cells in AD and impairs microglial migration and phagocytosis, thereby contributing to reduced Abeta clearance. Consequently, therapies targeting microglial phagocytosis should be tested under NE depletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different Populations of Human Locus Ceruleus Neurons Contain Heavy Metals or Hyperphosphorylated Tau: Implications for Amyloid-β and Tau Pathology in Alzheimer's Disease.

A marked loss of locus ceruleus (LC) neurons is a striking pathological feature of Alzheimer's disease (AD). LC neurons are particularly prone to taking up circulating toxicants such as heavy metals, and hyperphosphorylated tau (tau(HYP)) appears early in these neurons. In an attempt to find out if both heavy metals and tau(HYP) could be damaging LC neurons, we looked in the LC neurons of 21 sp...

متن کامل

Noradrenergic dysfunction in Alzheimer's disease

The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neuron...

متن کامل

Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans

The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably ...

متن کامل

Microglial and Neuronal TDP-43 Pathology in Anti-IgLON5-Related Tauopathy.

A novel neuronal tauopathy, mainly confined to hypothalamus and brainstem tegmentum, has recently been reported in patients with autoantibodies to the neuronal cell-adhesion molecule IgLON5. We describe a patient with anti-IgLON5 syndrome, who presented with dysautonomia and sleep disorder, followed by subacute dementia. Postmortem brain examination disclosed neuronal tau pathology prevailing i...

متن کامل

Noradrenergic Modulation of Cognition in Health and Disease

Norepinephrine released by the locus coeruleus modulates cellular processes and synaptic transmission in the central nervous system through its actions at a number of pre- and postsynaptic receptors. This transmitter system facilitates sensory signal detection and promotes waking and arousal, processes which are necessary for navigating a complex and dynamic sensory environment. In addition to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 13  شماره 

صفحات  -

تاریخ انتشار 2010